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Module 1

¢ Objectives

A Fundamentals of logic synthesis
A Mathematical formulation

A Definition of the problems
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What is logic synthesis?

¢ A logic-level representation is:

A A Boolean function
AA set of Boolean functions and their dependences
A A schematic with logic gates

AA logic-level HDL description
¢ Logic synthesis is the process of optimizing logic
representations with the final goal of:
A Speeding up a circuit
AReducing its area and manufacturing cost

A Reducing the energy consumption
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Logic synthesis has a long history

¢ George Boole:

ABoolean Algebra

¢ Claude Shannon
A Switching Theory

¢ Modern logic synthesis

AEd McCluskey, Robert Brayton, Randy Bryant

v ... and many other noteworthy scientists _
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Combinational logic design

¢
¢ Boolean Algebra

A Quintuple (B, +,., 0, 1)

ABinary Boolean algebra B={0,1}
¢ Boolean function

ASingle output f:B" — B

A Multiple output f: B" — B™

Alncompletely-specified:

v Don ’t care symbol: *
vi:B" —{0,1,*}m
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Examples of Boolean Algebras

¢ Algebra of classes:

AUniversal set S - classes are subsets of S
A 25 set of subsets of S
A Quintuple (25, U, M, @, S)

¢ Arithmetic Boolean algebra

An = product of distinct primes

AD,_ =divisors of n

A Quintuple (D,, lcm, gecd , 1, n)

AExample n =30, then ({1,2,3,5,6, 10, 15,30}, lcm, gcd, 1, 30)
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The don ’t care conditions

¢ We do not care about the value of a function

¢ Related to the environment

A Input patterns that never occur

A Input patterns such that some output is never observed

¢ Very important for synthesis and optimization
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Definitions

¢ Scalar function:
A ON-set

v Subset of the domain such that f is true

A OFF-set

v Subset of the domain such that f is false

ADC-set

v Subset of the domain such that f is a don "t care

¢ Multiple-output function:

AON, OFF, DC-sets defined for each component
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Cubical representation

011
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010

é E 000 100
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Definitions

¢ Boolean variables

¢ Boolean literals:

A Variables and their complement
¢ Product or cube:

A Product of literals
¢ Implicant:

A Product implying a value of the function (usually 1)
A Hypercube in the Boolean space

¢ Minterm:

A Product of all input variables implying a value of the function (usually 1)
A Vertex in the Boolean space
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Tabular representations

¢ Truth table

AList of all minterms of a function

¢ Implicant table or cover

A List of implicants sufficient to define a function

¢ Note:

Almplicant tables are smaller in size as compared to truth tables
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Example of truth table

e X =ab+a’ c¢; y=ab+bc+ac

ahc Xy
000 00
001 10
010 00
011 11
100 00
101 01
110 11
11 11
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Example of an encoded truth table

ahc Xy
000 00
001 10
010 00
011 11
100 00
101 01
110 11
111 11
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¢ Using the reverse order:

Ax = 11001010
Ay = 11101000

¢ Encoded in hexadecimal:

AX=Ca

Ay=e8
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Example of implicant table

e X =ab+a’ c¢; y=ab+bc+ac

abc Xy
001 10
*11 1
101 01
11* 1
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Cubical representation of minterms and implicants

ofi=a’b’'c’ +a b c+ab’ c+abc +abc’

ef,=a’b'c+ab’c

1M1

B 101
001 5 001 B 101

10
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000
f1 f2
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Representations

¢ Visual representations

A Cubical notation

A Karnaugh maps

¢ Computer-oriented representations

A Matrices

v Sparse
v Various encoding

ABinary-decision diagrams
v Address sparsity and efficiency
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Module 2

¢ Objectives

A Two-level logic optimization
A Motivation
AModels

A Exact algorithms for logic optimization
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Two-level logic optimization
motivation

¢ Reduce size of the representation

¢ Direct implementation

APLAs reduce size and delay

¢ Other implementation styles

A Reduce amount of information

A Simplify local functions and connections
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Programmable logic arrays

¢

& Macro-cells with rectangular structure i}ﬁi’l—,

A Implement any multi-output function

_X

*

¢ Programmable

A Old technology using fuses &

A Grandfather of FPGAs Lk

¢ Programmed T

A Layout generated by module generators

A Fairly popular in the seventies/eighties

¢ Advantages Sl 1|

A Simple, predictable timing

,
T
¥

+ Disadvantages FaERmE D

A Less flexible than cell-based realization
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A Dynamic operation in CMOS

=
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¢ Openissue

A Will PLA structures be useful with new nanotechnologies?
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Pseudo NMOS PLA
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Programmable logic array

of,=a’b +b’'c+ab; f,=b ¢

00 10 ® ‘
X001 11 o—1

11X 10 i |
(a)

(b)
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Two-level minimization

¢ Assumptions

A Function represented as a Boolean cover
v Set of implicants (covering all minterms)

APrimary goal is to reduce the number of implicants

AAll implicants have the same cost

A Secondary goal is to reduce the number of literals
¢ Rationale

Almplicants correspond to PLA rows

A Literals correspond to transistors
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Definitions

¢ Minimum cover

A Cover of a function with minimum number of implicants

A Global optimum

¢ Minimal cover or irredundant cover
A Cover of the function that is not a proper superset of another cover
A No implicant can be dropped
A Local optimum

¢ Minimal w.r.to 1-implicant containment

A No implicant contained by another one
A Weak local optimum
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Example

&f=a b c +ab c+tab c+abc+abc ;f,=a’b’'c+ab’c

B B
o
Minimum cover o
Y, B
o
Irredundant cover o
B X B
o
Minimal cover w.r. to single
implicant containment
f1 f2
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Definitions

¢ Prime implicant

Almplicant not contained by any other implicant

¢ Prime cover

A Cover of prime implicants

¢ Essential prime implicant

A There exist some minterm covered only by that prime implicant

ANeeds to be included in the cover
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Two-level logic minimization

¢ Exact methods

A Compute minimum cover
A Often difficult/impossible for large functions

ABased on Quine-McCluskey method

¢ Heuristic methods

A Compute minimal covers (possibly minimum)

AlLarge variety of methods and programs
v MINI, PRESTO, ESPRESSO
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Exact logic minimization

¢ Quine’ s theorem:

A There is a minimum cover that is prime

¢ Consequence

A Search for minimum cover can be restricted to prime implicants

¢ Quine-McCluskey method

A Compute prime implicants

A Determine minimum cover
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Prime implicant table

¢ Rows: minterms
¢ Columns: prime implicants

¢ Exponential size

A 2" minterms

AUp to 3"/ n prime implicants
¢ Remarks

A Some functions have much fewer primes
A Minterms can be grouped together

Almplicit methods for implicant enumeration

(c) Giovanni De Micheli
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e f=a’b’'c’ +a’ b’ c+ab’ ¢+abc +abc’

¢ Primes:

o Table:

(c) Giovanni De Micheli
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Example

00*
*01
1*1
11%

=

000
001
101
111
110

OO0k KHQ
OO0OrRrFkF O

O = OO

= = O 00 S

Prime implicants of f

Minimum cover of f
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Minimum cover
early methods

¢ Reduce table

Alteratively identify essentials,
save them in the cover.
Remove covered minterms

¢ Petrick’ s method

A Write covering clauses in pos form
A Multiply out pos form into sop form
A Select cube of minimum size

¢ Remark

A Multiplying out clauses has exponential cost
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Example

¢ pos clauses
A(x) (x+B) (B+Y)(y+d)(d)=1
¢ sop form; 5

A XBO+ xyd =1

¢ Solutions:
{xBd}
{xyo}
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Matrix representation

¢ View table as Boolean matrix: A
¢ Selection Boolean vector for primes: x

¢ Determine x such that

AAXx21

A Select enough columns to cover all rows

¢ Minimize norm (1 count) of x

(c) Giovanni De Micheli
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Example

12111

1101

100 0
1100

0110

0011
0001

33
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Covering problem

¢ Set covering problem:

AA setS -- minterm set
AA collection C of subsets (implicant set)

A Select fewest elements of C to cover S

¢ Computationally intractable problem

¢ Exact solution method

A Branch and bound algorithm

¢ Several heuristic approximation methods

(c) Giovanni De Micheli
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Example
Edge-cover of a hypergraph

44

—
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Branch and bound algorithm

¢ Tree search in the solution space

A Potentially exponential

¢ Use bounding function:

Alf the lower bound on the solution cost
that can be derived from a set of future choices
exceeds the cost of the best solution seen so far,
then kill the search

A Bounding function should be fast to evaluate and accurate

¢ Good pruning may expedite the search

(c) Giovanni De Micheli
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Example

Bound =6
Kill sub-tree
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Branch and bound for logic minimization
Reduction strategies

¢ Use matrix formulation of the problem

¢ Partitioning:
Alf Ais block diagonal:

v Solve covering problems for the corresponding blocks

¢ Essentials

A Column incident to one (or more) rows with single 1

v Select column
v Remove covered row(s) from table
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Branch and bound for logic minimization
Reduction strategies

¢ Column (implicant) dominance:

Alfag2ay forall k
v Remove column j (dominated)

ADominated implicant ( j ) has its minterms already covered by
dominant implicant (i)

¢ Row (minterm) dominance:

Alfay 2 ay forall k
v Remove row i (dominant)

AWhen an implicant covers the dominated minterm, it also covers
the dominant one

(c) Giovanni De Micheli 39



40

"
i
s senes
H—
= @ -— I 1
He== )
—

O- 0O

OO0

S O~ 0O
O™~ m™=~0O ™

-~ O 0O

Example

|

T
HH

HH
T

A

(c) Giovanni De Micheli



Example

¢Fifth row is dominant

¢Fourth column is essential A —

|
OO0 K=K

¢Fifth column is dominated

& Matrix after reductions:

>
|
O =
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Branch and bound covering algorithm

EXACT_COVER(A,x,b) {
Reduce matrix A and update corresponding x;
if (current_estimate = |b|) return (b);
if (A has no rows) return(x);
select a branching column c;
X.=1;
A = A after deleting ¢ and rows incident to it;
X~ = EXACT_COVER(A,x,b);
if (| x7[<[b])
b=x";
X =0;
A = A after deleting c;
X~ = EXACT_COVER(A,x,b);
if (| x7[<[bl)
b=Xx";
return(b);
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Bounding function

¢ Estimate lower bound on covers that can be derived from
current solution vector x

¢ The sum of the 1s in x, plus bound of cover for local A

Alndependent set of rows

v No 1 in the same column
v Require independent implicants to cover

A Construct graph to show pairwise independence

AFind clique number
v Size of the largest clique

A Approximation (lower) is acceptable
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Example

¢Row 4 independent from 1,2,3

¢Clique number and bound is 2

(c) Giovanni De Micheli
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Example

¢ There are no independent rows

A Clique number is 1 (one vertex)

A Bound is 1#1=2 A

v Because of the essential already
selected

(c) Giovanni De Micheli
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Example
Branching on the cyclic core

¢ Select first column

A Recur with A = [11]

v Delete one dominated column
v Take other column (essential) A

O = -
_— = O
_ =

A New costis 3

¢ Exclude first column

A Find another solution with cost
equal to 3.

A Discard
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Espresso-exact

¢ Exact 2-level logic minimizer

¢ Exploits iterative reduction and branch and bound
algorithm on cyclic core

¢ Compact implicant table

ARows represent groups of minterms covered by the same
implicants

¢ Very efficient

A Solves most benchmarks

(c) Giovanni De Micheli
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After removing the essentials

X
0000,0010 11
1101 00

(c) Giovanni De Micheli

Example

0111

31101

o« 0**0
O 10**
e 101
C *101
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Exact two-level minimization

¢ There are two main difficulties:

A Storage of the implicant table

A Solving the cyclic core

¢ Implicit representation of prime implicants

A Methods based on binary decision diagrams

A Avoid explicit tabulation

¢ Recent methods make 2-level optimization solve exactly
almost all henchmarks

AHeuristic optimization is just used to achieve solutions faster

(c) Giovanni De Micheli
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Module 3

¢ Boolean Relations

A Motivation of using relations
A Optimization of realization of Boolean relation

A Comparisons to two-level optimization

(c) Giovanni De Micheli
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Boolean relations

¢ Generalization of Boolean functions

¢ More than one output pattern corresponds to an input
pattern

A Multiple-choice specifications
AModel inner blocks of multi-level circuits

¢ Degrees of freedom in finding an implementation

A More general than don 't care conditions

¢ Problem:

A Given a Boolean relation, find a minimum cover of a compatible
Boolean function that can implement the relation
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Example

+Compare: 2,
Aatbh>47? T T
Aa+b<3? COMPARATOR

N2
R

ADDER

N‘I
BE
%0 % 0o 1
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X

= = =R R, O PR OO0 O0O0OO0

HFRPOFRRFRFROOHFORFRLOFOODO

R PO OFOFRFRFOOOR OO

HOHI—‘I—‘OOI—‘O!—‘I—‘OOOI—‘OOO“

{7000, 001, 010 }
{ 000, 001, 010 }
{ 000, 001, 010 }
{ 000, 001, 010 }
{ 000, 001, 010 }
{ 000, 001, 010 }

{ 011, 100 }

{ 011, 100 }

{ 011, 100 }

{ 011, 100 }

{ 011, 100 }

{ 011, 100 }

{ 011, 100 }

{ 101, 110, 111 }Notethatoutput111
{101, 110, 111 }cannotbe a+b but can be

{ 101, 110, 111 }considered as a dont care
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Example

¢Circuit is no longer an adder

a1 ap bl bo X

o * 1 * 1010
1 * 0 * |010
1 * 1 * 1100
x * * 1 1001
* 1 * * | 001
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Minimization of Boolean relations

¢ Since there are many possible output values (for any input),
there are many logic functions implementing the relation

A Compatible functions

¢ Problem

AFind a minimum compatible function

¢ Do not enumerate all compatible functions

A Compute the primes of the compatible functions
v C-primes

ADerive a logic cover from the c-primes
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Example
¢ Boolean relation:
¢ 4 compatible functions

¢ Assume c-primes include:

e *11 01
C 1*1 10

¢ To cover minterm 111:

A Take both primes or none

AEC+ €T

APetrick’s function is binate

(c) Giovanni De Micheli

ahc Xy
000 00
001 00
010 00
011 10
100 00
101 01
110 {00,11}
111 {00,11}




Minimizing Boolean relations

¢ Minimizing Boolean relations is more complex

A As compared to minimizing Boolean functions

¢ In classic Boolean minimization we just need to select enough
implicants to cover the minterms

A Covering clause is unate in all variables

A Any additional implicant does not hurt

¢ In Boolean relation optimization, we need to pick implicants to
realize a compatible function

A Some implicants cannot be taken together
A Choosing an implicant may imply rejecting an other
A Covering clause is binate (implicant mutual exclusion)

(c) Giovanni De Micheli
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Solving binate covering

¢ Binate cover can be solved with branch and bound

Aln practice much more difficult to solve, because it is harder to
bound effectively

¢ Binate cover can be reduced to min-cost SAT

A SAT solvers can be used

¢ Binate cover can he also modeled by BDDs

¢ Several approximation algorithms for binate cover
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Summary: Boolean Relations

¢ Generalization of Boolean functions

A More degrees of freedom than don ’t care sets

¢ Useful to represent multiple choices
¢ Useful to model internals of logic networks

¢ More general formalism

A But computationally-intensive solution method

(c) Giovanni De Micheli
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