
Two-level Logic Synthesis and Optimization

Giovanni De Micheli
Integrated Systems Laboratory

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

© Giovanni De Micheli – All rights reserved

(c) Giovanni De Micheli 2

Module 1

Objectives
Fundamentals of logic synthesis
Mathematical formulation
Definition of the problems

What is logic synthesis?

A logic-level representation is:
A Boolean function
A set of Boolean functions and their dependences
A schematic with logic gates
A logic-level HDL description

Logic synthesis is the process of optimizing logic
representations with the final goal of:
Speeding up a circuit
Reducing its area and manufacturing cost
Reducing the energy consumption

(c) Giovanni De Micheli 3

Logic synthesis has a long history

George Boole:
Boolean Algebra

Claude Shannon
Switching Theory

Modern logic synthesis
Ed McCluskey, Robert Brayton, Randy Bryant

 … and many other noteworthy scientists

(c) Giovanni De Micheli 4

(c) Giovanni De Micheli 5

Combinational logic design
Background

Boolean Algebra
Quintuple (B, +, . , 0, 1)
Binary Boolean algebra B = { 0, 1 }

Boolean function
Single output f : Bn → B
Multiple output f : Bn → Bm

 Incompletely-specified:
 Don’t care symbol: *
 f : Bn → { 0, 1, * }m

Examples of Boolean Algebras

Algebra of classes:
Universal set S – classes are subsets of S
2S set of subsets of S
Quintuple (2S, U, Π , Ø, S)

Arithmetic Boolean algebra
n = product of distinct primes
Dn = divisors of n
Quintuple (Dn, lcm, gcd , 1, n)
Example n = 30, then ({1,2,3,5,6, 10, 15,30}, lcm, gcd, 1, 30)

(c) Giovanni De Micheli 6

(c) Giovanni De Micheli 7

The don’t care conditions

We do not care about the value of a function

Related to the environment
 Input patterns that never occur
 Input patterns such that some output is never observed

Very important for synthesis and optimization

(c) Giovanni De Micheli 8

Definitions

Scalar function:
ON-set

 Subset of the domain such that f is true

OFF-set
 Subset of the domain such that f is false

DC-set
 Subset of the domain such that f is a don’t care

Multiple-output function:
ON, OFF, DC-sets defined for each component

(c) Giovanni De Micheli 9

Cubical representation

(c) Giovanni De Micheli 10

Definitions

 Boolean variables
 Boolean literals:

 Variables and their complement

 Product or cube:
 Product of literals

 Implicant:
 Product implying a value of the function (usually 1)
 Hypercube in the Boolean space

 Minterm:
 Product of all input variables implying a value of the function (usually 1)
 Vertex in the Boolean space

(c) Giovanni De Micheli 11

Tabular representations

Truth table
List of all minterms of a function

 Implicant table or cover
List of implicants sufficient to define a function

Note:
 Implicant tables are smaller in size as compared to truth tables

(c) Giovanni De Micheli 12

Example of truth table

 x = ab+a’c; y = ab+bc+ac

abc xy
000 00
001 10
010 00
011 11
100 00
101 01
110 11
111 11

Example of an encoded truth table

Using the reverse order:
x = 11001010
y = 11101000

Encoded in hexadecimal:
x = ca
y = e8

(c) Giovanni De Micheli 13

abc xy

000 00
001 10
010 00
011 11
100 00
101 01
110 11
111 11

(c) Giovanni De Micheli 14

Example of implicant table

 x = ab+a’c; y = ab+bc+ac

abc xy

001 10

*11 11

101 01

11* 11

(c) Giovanni De Micheli 15

Cubical representation of minterms and implicants

 f1 = a’b’c’ + a’b’c + ab’c + abc +abc’

 f2 = a’b’c + ab’c

111

f1

c b
a 000

001

110

101

α

β
γ

δ

f2

001 101β

(c) Giovanni De Micheli 16

Representations

Visual representations
Cubical notation
Karnaugh maps

Computer-oriented representations
Matrices

 Sparse
 Various encoding

Binary-decision diagrams
 Address sparsity and efficiency

(c) Giovanni De Micheli 17

Module 2

Objectives
Two-level logic optimization
Motivation
Models
Exact algorithms for logic optimization

(c) Giovanni De Micheli 18

Two-level logic optimization
motivation

Reduce size of the representation

Direct implementation
PLAs reduce size and delay

Other implementation styles
Reduce amount of information
Simplify local functions and connections

(c) Giovanni De Micheli 19

Programmable logic arrays
 Macro-cells with rectangular structure

 Implement any multi-output function

 Programmable
 Old technology using fuses
 Grandfather of FPGAs

 Programmed
 Layout generated by module generators
 Fairly popular in the seventies/eighties

 Advantages
 Simple, predictable timing

 Disadvantages
 Less flexible than cell-based realization
 Dynamic operation in CMOS

 Open issue
 Will PLA structures be useful with new nanotechnologies?

Pseudo NMOS PLA

GND GND GND GND

GND

GND

GND

VDD

VDD

X0X0 X1 f0 f1X1 X2X2

AND-plane OR-plane

(c) Giovanni De Micheli 21

Programmable logic array

 f1 = a’b’ + b’c + ab; f2 = b’c

(c) Giovanni De Micheli 22

Two-level minimization

Assumptions
Function represented as a Boolean cover

 Set of implicants (covering all minterms)

Primary goal is to reduce the number of implicants
All implicants have the same cost
Secondary goal is to reduce the number of literals

Rationale
 Implicants correspond to PLA rows
Literals correspond to transistors

(c) Giovanni De Micheli 23

Definitions

 Minimum cover
 Cover of a function with minimum number of implicants
 Global optimum

 Minimal cover or irredundant cover
 Cover of the function that is not a proper superset of another cover
 No implicant can be dropped
 Local optimum

 Minimal w.r.to 1-implicant containment
 No implicant contained by another one
 Weak local optimum

(c) Giovanni De Micheli 24

Example

 f1 = a’b’c’ + a’b’c + ab’c + abc +abc’; f2 = a’b’c + ab’c

f1 f2

β

α

β
δ

Minimum cover

α

γ
δ

β

Irredundant cover

α

β γ
δ

β

Minimal cover w.r. to single
implicant containment

(c) Giovanni De Micheli 25

Definitions

Prime implicant
 Implicant not contained by any other implicant

Prime cover
Cover of prime implicants

Essential prime implicant
There exist some minterm covered only by that prime implicant
Needs to be included in the cover

(c) Giovanni De Micheli 26

Two-level logic minimization

Exact methods
Compute minimum cover
Often difficult/impossible for large functions
Based on Quine-McCluskey method

Heuristic methods
Compute minimal covers (possibly minimum)
Large variety of methods and programs

 MINI, PRESTO, ESPRESSO

(c) Giovanni De Micheli 27

Exact logic minimization

Quine’s theorem:
There is a minimum cover that is prime

Consequence
Search for minimum cover can be restricted to prime implicants

Quine-McCluskey method
Compute prime implicants
Determine minimum cover

(c) Giovanni De Micheli 28

Prime implicant table

Rows: minterms

Columns: prime implicants

Exponential size
2n minterms
Up to 3n / n prime implicants

Remarks
Some functions have much fewer primes
Minterms can be grouped together
 Implicit methods for implicant enumeration

(c) Giovanni De Micheli 29

Example
 f = a’b’c’ + a’b’c + ab’c +abc +abc’
 Primes:

Table:

α

β γ
δ

Prime implicants of f

α

β
δ

Minimum cover of f

(c) Giovanni De Micheli 30

Minimum cover
early methods

Reduce table
 Iteratively identify essentials,

save them in the cover.
Remove covered minterms

Petrick’s method
Write covering clauses in pos form
Multiply out pos form into sop form
Select cube of minimum size

Remark
Multiplying out clauses has exponential cost

(c) Giovanni De Micheli 31

Example

 pos clauses
(α) (α + β) (β + γ) (γ + δ) (δ) = 1

sop form:
 αβδ + αγδ = 1

Solutions:

{ α β δ }

{ α γ δ }

α

β γ
δ

(c) Giovanni De Micheli 32

Matrix representation

View table as Boolean matrix: A

Selection Boolean vector for primes: x

Determine x such that
A x ≥ 1
Select enough columns to cover all rows

Minimize norm (1 count) of x

(c) Giovanni De Micheli 33

Example

(c) Giovanni De Micheli 34

Covering problem

Set covering problem:
A set S -- minterm set
A collection C of subsets (implicant set)
Select fewest elements of C to cover S

Computationally intractable problem

Exact solution method
Branch and bound algorithm

Several heuristic approximation methods

(c) Giovanni De Micheli 35

Example
Edge-cover of a hypergraph

(c) Giovanni De Micheli 36

Branch and bound algorithm

Tree search in the solution space
Potentially exponential

Use bounding function:
 If the lower bound on the solution cost

that can be derived from a set of future choices
exceeds the cost of the best solution seen so far,
then kill the search

Bounding function should be fast to evaluate and accurate

Good pruning may expedite the search

(c) Giovanni De Micheli 37

Example

r

9

ba

5 4 8

x y w z

Bound = 6
Kill sub-tree

(c) Giovanni De Micheli 38

Branch and bound for logic minimization
Reduction strategies

Use matrix formulation of the problem

Partitioning:
 If A is block diagonal:

 Solve covering problems for the corresponding blocks

Essentials
Column incident to one (or more) rows with single 1

 Select column
 Remove covered row(s) from table

(c) Giovanni De Micheli 39

Branch and bound for logic minimization
Reduction strategies

Column (implicant) dominance:
 If aki ≥ akj for all k

 Remove column j (dominated)

Dominated implicant (j) has its minterms already covered by
dominant implicant (i)

Row (minterm) dominance:
 If aik ≥ ajk for all k

 Remove row i (dominant)

When an implicant covers the dominated minterm, it also covers
the dominant one

(c) Giovanni De Micheli 40

Example

(c) Giovanni De Micheli 41

Example

Fifth row is dominant

Fourth column is essential

Fifth column is dominated

Matrix after reductions:

(c) Giovanni De Micheli 42

Branch and bound covering algorithm
EXACT_COVER(A,x,b) {

Reduce matrix A and update corresponding x;
if (current_estimate ≥ |b|) return (b);
if (A has no rows) return(x);
select a branching column c;
xc = 1;
Ã = A after deleting c and rows incident to it;
x~ = EXACT_COVER(Ã,x,b);
if (| x~| < |b|)

b = x~;
xc = 0;
Ã = A after deleting c;
x~ = EXACT_COVER(Ã,x,b);
if (| x~| < |b|)

b = x~;
return(b);

}

(c) Giovanni De Micheli 43

Bounding function

Estimate lower bound on covers that can be derived from
current solution vector x

The sum of the 1s in x, plus bound of cover for local A
 Independent set of rows

 No 1 in the same column
 Require independent implicants to cover

Construct graph to show pairwise independence
Find clique number

 Size of the largest clique

Approximation (lower) is acceptable

(c) Giovanni De Micheli 44

Example

Row 4 independent from 1,2,3

Clique number and bound is 2

(c) Giovanni De Micheli 45

Example

There are no independent rows
 Clique number is 1 (one vertex)
 Bound is 1+1= 2

 Because of the essential already
selected

A =

1 0 1
1 1 0
0 1 1

(c) Giovanni De Micheli 46

Example
Branching on the cyclic core

Select first column
 Recur with Ã = [11]

 Delete one dominated column
 Take other column (essential)

 New cost is 3

Exclude first column
 Find another solution with cost

equal to 3.
 Discard

A =

1 0 1
1 1 0
0 1 1

(c) Giovanni De Micheli 47

Espresso-exact

Exact 2-level logic minimizer

Exploits iterative reduction and branch and bound
algorithm on cyclic core

Compact implicant table
Rows represent groups of minterms covered by the same

implicants

Very efficient
Solves most benchmarks

(c) Giovanni De Micheli 48

Example

a
bc

d

α 0 * * 0 1

ζ * 1 0 1 1
ε 1 * 0 1 1
δ 1 0 * * 1
γ 0 1 * * 1
β * 0 * 0 1

0111

1011
0110

0010

0000

0101

1001

1101

0100

1010α β ε ζ
0000,0010

1101

1

0

1

0

0

1

0

1

After removing the essentials

(c) Giovanni De Micheli 49

Exact two-level minimization

There are two main difficulties:
Storage of the implicant table
Solving the cyclic core

 Implicit representation of prime implicants
Methods based on binary decision diagrams
Avoid explicit tabulation

Recent methods make 2-level optimization solve exactly
almost all benchmarks
Heuristic optimization is just used to achieve solutions faster

(c) Giovanni De Micheli 50

Module 3

Boolean Relations
Motivation of using relations
Optimization of realization of Boolean relation
Comparisons to two-level optimization

(c) Giovanni De Micheli 51

Boolean relations

Generalization of Boolean functions
More than one output pattern corresponds to an input

pattern
Multiple-choice specifications
Model inner blocks of multi-level circuits

Degrees of freedom in finding an implementation
More general than don’t care conditions

Problem:
Given a Boolean relation, find a minimum cover of a compatible

Boolean function that can implement the relation

(c) Giovanni De Micheli 52

Example

Compare:
a + b > 4 ?
a + b < 3 ?

(c) Giovanni De Micheli 53

Example

Note that output 111
cannot be a+b but can be
considered as a don’t care

(c) Giovanni De Micheli 54

Example

Circuit is no longer an adder

(c) Giovanni De Micheli 55

Minimization of Boolean relations

Since there are many possible output values (for any input),
there are many logic functions implementing the relation
Compatible functions

Problem
Find a minimum compatible function

Do not enumerate all compatible functions
Compute the primes of the compatible functions

 C-primes

Derive a logic cover from the c-primes

Example
Boolean relation:

4 compatible functions

Assume c-primes include:

To cover minterm 111:
Take both primes or none
ε ζ + ε’ ζ’
Petrick’s function is binate

(c) Giovanni De Micheli 56

abc xy
000 00
001 00
010 00
011 10
100 00
101 01
110 {00,11}
111 {00,11}

ζ 1 * 1 10
ε * 1 1 01

(c) Giovanni De Micheli 57

Minimizing Boolean relations

 Minimizing Boolean relations is more complex
 As compared to minimizing Boolean functions

 In classic Boolean minimization we just need to select enough
implicants to cover the minterms
 Covering clause is unate in all variables
 Any additional implicant does not hurt

 In Boolean relation optimization, we need to pick implicants to
realize a compatible function
 Some implicants cannot be taken together
 Choosing an implicant may imply rejecting an other
 Covering clause is binate (implicant mutual exclusion)

(c) Giovanni De Micheli 58

Solving binate covering

Binate cover can be solved with branch and bound
 In practice much more difficult to solve, because it is harder to

bound effectively

Binate cover can be reduced to min-cost SAT
SAT solvers can be used

Binate cover can be also modeled by BDDs

Several approximation algorithms for binate cover

(c) Giovanni De Micheli 59

Summary: Boolean Relations

Generalization of Boolean functions
More degrees of freedom than don’t care sets

Useful to represent multiple choices

Useful to model internals of logic networks

More general formalism
But computationally-intensive solution method

