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Module 1

Objectives
Fundamentals of logic synthesis
Mathematical formulation
Definition of the problems



What is logic synthesis?

A logic-level representation is:
A Boolean function
A set of Boolean functions and their dependences
A schematic with logic gates
A logic-level HDL description

Logic synthesis is the process of optimizing logic 
representations with the final goal of:
Speeding up a circuit
Reducing its area and manufacturing cost
Reducing the energy consumption
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Logic synthesis has a long history

George Boole:
Boolean Algebra

Claude Shannon
Switching Theory

Modern logic synthesis
Ed McCluskey, Robert Brayton, Randy Bryant

 … and many other noteworthy scientists
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Combinational logic design
Background

Boolean Algebra
Quintuple (B, +, . , 0, 1)
Binary Boolean algebra B = { 0, 1 }

Boolean function
Single output   f : Bn → B
Multiple output  f : Bn → Bm

 Incompletely-specified:
 Don’t care symbol:  *
 f : Bn → { 0, 1, * }m



Examples of Boolean Algebras

Algebra of classes:
Universal set S – classes are subsets of S
2S set of subsets of S
Quintuple (2S, U, Π , Ø, S)

Arithmetic Boolean algebra
n = product of distinct primes
Dn = divisors of n
Quintuple (Dn, lcm, gcd , 1, n)
Example n = 30, then ({1,2,3,5,6, 10, 15,30}, lcm, gcd, 1, 30)
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The don’t care conditions

We do not care about the value of a function

Related to the environment
 Input patterns that never occur
 Input patterns such that some output is never observed

Very important for synthesis and optimization
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Definitions

Scalar function:
ON-set

 Subset of the domain such that f is true

OFF-set
 Subset of the domain such that f is false

DC-set
 Subset of the domain such that f is a don’t care

Multiple-output function:
ON, OFF, DC-sets defined for each component
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Cubical representation
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Definitions

 Boolean variables
 Boolean literals:

 Variables and their complement

 Product or cube:
 Product of literals

 Implicant:
 Product implying a value of the function (usually 1)
 Hypercube in the Boolean space

 Minterm:
 Product of all input variables implying a value of the function (usually 1)
 Vertex in the Boolean space
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Tabular representations

Truth table
List of all minterms of a function

 Implicant table or cover
List of implicants sufficient to define a function

Note:
 Implicant tables are smaller in size as compared to truth tables
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Example of truth table

 x = ab+a’c;   y = ab+bc+ac

abc xy
000 00
001 10
010 00
011 11
100 00
101 01
110 11
111 11



Example of an encoded truth table

Using the reverse order:
x = 11001010
y = 11101000

Encoded in hexadecimal:
x = ca
y = e8 
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abc xy

000 00
001 10
010 00
011 11
100 00
101 01
110 11
111 11
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Example of implicant table

 x = ab+a’c;   y = ab+bc+ac

abc xy

001 10

*11 11

101 01

11* 11
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Cubical representation of minterms and implicants

 f1 = a’b’c’ + a’b’c + ab’c + abc +abc’

 f2 = a’b’c + ab’c

111

f1

c b
a 000

001

110

101

α

β
γ

δ

f2

001 101β
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Representations

Visual representations
Cubical notation
Karnaugh maps

Computer-oriented representations
Matrices 

 Sparse
 Various encoding

Binary-decision diagrams
 Address sparsity and efficiency
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Module 2

Objectives
Two-level logic optimization
Motivation
Models
Exact algorithms for logic optimization
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Two-level logic optimization
motivation

Reduce size of the representation

Direct implementation
PLAs  reduce size and delay

Other implementation styles
Reduce amount of information
Simplify local functions and connections
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Programmable logic arrays
 Macro-cells with rectangular structure

 Implement any multi-output function

 Programmable
 Old technology using fuses
 Grandfather of FPGAs

 Programmed
 Layout generated by module generators
 Fairly popular in the seventies/eighties

 Advantages
 Simple, predictable timing

 Disadvantages
 Less flexible than cell-based realization
 Dynamic operation in CMOS

 Open issue
 Will PLA structures be useful with new nanotechnologies?



Pseudo NMOS PLA

GND GND GND GND

GND

GND

GND

VDD

VDD

X0X0 X1 f0 f1X1 X2X2

AND-plane OR-plane
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Programmable logic array

 f1 = a’b’ + b’c + ab;   f2 = b’c
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Two-level minimization

Assumptions
Function represented as a Boolean cover

 Set of implicants (covering all minterms)

Primary goal is to reduce the number of implicants
All implicants have the same cost
Secondary goal is to reduce the number of literals

Rationale
 Implicants correspond to PLA rows
Literals correspond to transistors
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Definitions

 Minimum cover
 Cover of a function with minimum number of implicants
 Global optimum

 Minimal cover or irredundant cover
 Cover of the function that is not a proper superset of another cover
 No implicant can be dropped
 Local optimum

 Minimal w.r.to 1-implicant containment
 No implicant contained by another one
 Weak local optimum
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Example

 f1 = a’b’c’ + a’b’c + ab’c + abc +abc’; f2 = a’b’c + ab’c

f1 f2

β

α

β
δ

Minimum cover

α

γ
δ

β

Irredundant cover

α

β γ
δ

β

Minimal cover w.r. to single 
implicant containment
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Definitions

Prime implicant
 Implicant not contained by any other implicant

Prime cover
Cover of prime implicants

Essential prime implicant
There exist some minterm covered only by that prime implicant
Needs to be included in the cover
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Two-level logic minimization

Exact methods
Compute minimum cover
Often difficult/impossible for large functions
Based on Quine-McCluskey method

Heuristic methods
Compute minimal covers (possibly minimum)
Large variety of methods and programs

 MINI, PRESTO, ESPRESSO
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Exact logic minimization

Quine’s theorem:
There is a minimum cover that is prime

Consequence
Search for minimum cover can be restricted to prime implicants

Quine-McCluskey method
Compute prime implicants
Determine minimum cover
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Prime implicant table

Rows: minterms

Columns: prime implicants

Exponential size
2n minterms
Up to 3n / n prime implicants

Remarks
Some functions have much fewer primes
Minterms can be grouped together
 Implicit methods for implicant enumeration
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Example
 f = a’b’c’ + a’b’c + ab’c +abc +abc’
 Primes:

Table:

α

β γ
δ

Prime implicants of f

α

β
δ

Minimum cover of f
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Minimum cover
early methods

Reduce table
 Iteratively identify essentials,

save them in the cover.
Remove covered minterms

Petrick’s method
Write covering clauses in pos form
Multiply out pos form into sop form
Select cube of minimum size

Remark
Multiplying out clauses has exponential cost
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Example

 pos clauses
(α) (α + β)  (β + γ) (γ + δ) (δ) = 1

sop form:
 αβδ +  αγδ = 1

Solutions:

{ α β δ }

{ α γ δ }

α

β γ
δ
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Matrix representation

View table as Boolean matrix: A

Selection Boolean vector for primes: x

Determine x such that
A x ≥ 1
Select enough columns to cover all rows

Minimize norm (1 count) of x
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Example
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Covering problem

Set covering problem:
A set S -- minterm set
A collection C of subsets (implicant set)
Select fewest elements of C to cover  S

Computationally intractable problem

Exact solution method
Branch and bound algorithm

Several heuristic approximation methods
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Example 
Edge-cover of a hypergraph
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Branch and bound algorithm

Tree search in the solution space
Potentially exponential

Use bounding function:
 If the lower bound on the solution cost 

that can be derived from a set of future choices 
exceeds the cost of the best solution seen so far, 
then kill the search

Bounding function should be fast to evaluate and accurate

Good pruning may expedite the search
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Example

r

9

ba

5 4 8

x y w z

Bound = 6
Kill sub-tree
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Branch and bound for logic minimization
Reduction strategies

Use matrix formulation of the problem

Partitioning:
 If A is block diagonal:

 Solve covering problems for the corresponding blocks

Essentials
Column incident to one (or more) rows with single 1

 Select column
 Remove covered row(s) from table
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Branch and bound for logic minimization
Reduction strategies

Column (implicant) dominance:
 If aki ≥ akj for all  k

 Remove column j (dominated) 

Dominated implicant ( j ) has its minterms already covered by 
dominant implicant ( i )

Row (minterm) dominance:
 If aik ≥ ajk for all  k

 Remove row i (dominant)

When an implicant covers the dominated minterm, it also covers 
the dominant one
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Example
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Example

Fifth row is dominant

Fourth column is essential

Fifth column is dominated

Matrix after reductions:
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Branch and bound covering algorithm
EXACT_COVER(A,x,b) {

Reduce matrix A and update corresponding x;
if (current_estimate ≥ |b|) return (b);
if (A has no rows) return(x);
select a branching column c;
xc = 1; 
Ã = A after deleting c and rows incident to it;
x~ = EXACT_COVER(Ã,x,b);
if ( | x~| < |b| )

b = x~;
xc = 0; 
Ã = A after deleting c;
x~ = EXACT_COVER(Ã,x,b);
if ( | x~| < |b| )

b = x~;
return(b);

}
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Bounding function

Estimate lower bound on covers that can be derived from 
current solution vector x

The sum of the 1s in x, plus bound of cover for local A
 Independent set of rows

 No 1 in the same column
 Require independent implicants to cover

Construct graph to show pairwise independence
Find clique number

 Size of the largest clique

Approximation (lower) is acceptable
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Example

Row 4 independent from 1,2,3

Clique number and bound is 2
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Example

There are no independent rows
 Clique number is 1 (one vertex)
 Bound is 1+1= 2

 Because of the essential already 
selected

A   =

1 0     1
1     1     0
0     1     1
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Example
Branching on the cyclic core

Select first column
 Recur with Ã = [11]

 Delete one dominated column
 Take other column (essential)

 New cost is 3

Exclude first column
 Find another solution with cost 

equal to 3. 
 Discard

A   =

1 0     1
1     1     0
0     1     1
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Espresso-exact

Exact 2-level logic minimizer

Exploits iterative reduction and branch and bound 
algorithm on cyclic core

Compact implicant table
Rows represent groups of minterms covered by the same 

implicants

Very efficient
Solves most benchmarks
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Example

a
bc

d

α 0 * * 0     1

ζ * 1 0 1     1
ε 1 * 0 1     1
δ 1 0 * *     1
γ 0 1 * *     1
β * 0 * 0     1

0111

1011
0110

0010

0000

0101

1001

1101

0100

1010α β ε ζ
0000,0010

1101

1

0

1

0

0

1

0

1

After removing the essentials
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Exact two-level minimization

There are two main difficulties:
Storage of the implicant table
Solving the cyclic core

 Implicit representation of prime implicants
Methods based on binary decision diagrams
Avoid explicit tabulation

Recent methods make 2-level optimization solve exactly 
almost all benchmarks
Heuristic optimization is just used to achieve solutions faster
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Module 3

Boolean Relations
Motivation of using relations
Optimization of realization of Boolean relation
Comparisons to two-level optimization
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Boolean relations

Generalization of Boolean functions
More than one output pattern corresponds to an input 

pattern
Multiple-choice specifications
Model inner blocks of multi-level circuits

Degrees of freedom in finding an implementation
More general than don’t care conditions

Problem:
Given a Boolean relation, find a minimum cover of a compatible 

Boolean function that can implement the relation
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Example

Compare:
a + b > 4 ?
a + b < 3 ?
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Example

Note that output 111
cannot be a+b but can be 
considered as a don’t care
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Example

Circuit is no longer an adder
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Minimization of Boolean relations

Since there are many possible output values (for any input), 
there are many logic functions implementing the relation
Compatible functions

Problem
Find a minimum compatible function

Do not enumerate all compatible functions
Compute the primes of the compatible functions

 C-primes

Derive a logic cover from the c-primes



Example
Boolean relation:

4 compatible functions

Assume c-primes include:

To cover minterm 111: 
Take both primes or none
ε ζ + ε’ ζ’
Petrick’s function is binate
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abc xy
000 00
001 00
010 00
011 10
100 00
101 01
110 {00,11}
111 {00,11}

ζ 1 * 1     10
ε * 1 1     01
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Minimizing Boolean relations

 Minimizing Boolean relations is more complex
 As compared to minimizing Boolean functions

 In classic Boolean minimization we just need to select enough 
implicants to cover the minterms
 Covering clause is unate in all variables
 Any additional implicant does not hurt

 In Boolean relation optimization, we need to pick implicants to 
realize a compatible function
 Some implicants cannot be taken together
 Choosing an implicant may imply rejecting an other
 Covering clause is binate (implicant mutual exclusion)
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Solving binate covering

Binate cover can be solved with branch and bound
 In practice much more difficult to solve, because it is harder to 

bound effectively

Binate cover can be reduced to min-cost SAT
SAT solvers can be used

Binate cover can be also modeled by BDDs

Several approximation algorithms for binate cover
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Summary: Boolean Relations

Generalization of Boolean functions
More degrees of freedom than don’t care sets

Useful to represent multiple choices

Useful to model internals of logic networks

More general formalism 
But computationally-intensive solution method


