Two-level Logic Synthesis and Optimization

Giovanni De Micheli
Integrated Systems Laboratory

LS

eeeeeeeee d Systems Laboratory

=Pi-L

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

© Giovanni De Micheli - All rights reserved

Module 1

¢ Objectives

A Fundamentals of logic synthesis
A Mathematical formulation

A Definition of the problems

(c) Giovanni De Micheli

What is logic synthesis?

¢ A logic-level representation is:

A A Boolean function
AA set of Boolean functions and their dependences
A A schematic with logic gates

AA logic-level HDL description
¢ Logic synthesis is the process of optimizing logic
representations with the final goal of:
A Speeding up a circuit
AReducing its area and manufacturing cost

A Reducing the energy consumption

(c) Giovanni De Micheli

Logic synthesis has a long history

¢ George Boole:

ABoolean Algebra

¢ Claude Shannon
A Switching Theory

¢ Modern logic synthesis

AEd McCluskey, Robert Brayton, Randy Bryant

v ... and many other noteworthy scientists _

(c) Giovanni De Micheli 4

Combinational logic design

¢
¢ Boolean Algebra

A Quintuple (B, +,., 0, 1)

ABinary Boolean algebra B={0,1}
¢ Boolean function

ASingle output f:B" — B

A Multiple output f: B" — B™

Alncompletely-specified:

v Don ’t care symbol: *
vi:B" —{0,1,*}m

(c) Giovanni De Micheli 5

Examples of Boolean Algebras

¢ Algebra of classes:

AUniversal set S - classes are subsets of S
A 25 set of subsets of S
A Quintuple (25, U, M, @, S)

¢ Arithmetic Boolean algebra

An = product of distinct primes

AD,_ =divisors of n

A Quintuple (D,, lcm, gecd , 1, n)

AExample n =30, then ({1,2,3,5,6, 10, 15,30}, lcm, gcd, 1, 30)

(c) Giovanni De Micheli

The don ’t care conditions

¢ We do not care about the value of a function

¢ Related to the environment

A Input patterns that never occur

A Input patterns such that some output is never observed

¢ Very important for synthesis and optimization

(c) Giovanni De Micheli

Definitions

¢ Scalar function:
A ON-set

v Subset of the domain such that f is true

A OFF-set

v Subset of the domain such that f is false

ADC-set

v Subset of the domain such that f is a don "t care

¢ Multiple-output function:

AON, OFF, DC-sets defined for each component

(c) Giovanni De Micheli

Cubical representation

011

111

001 101

010

é E 000 100

(c) Giovanni De Micheli

110

a'b'c

a'b'c’

a'bc

abc

ab’c

a'bc’

ab’c’

abc’

Definitions

¢ Boolean variables

¢ Boolean literals:

A Variables and their complement
¢ Product or cube:

A Product of literals
¢ Implicant:

A Product implying a value of the function (usually 1)
A Hypercube in the Boolean space

¢ Minterm:

A Product of all input variables implying a value of the function (usually 1)
A Vertex in the Boolean space

(c) Giovanni De Micheli

10

Tabular representations

¢ Truth table

AList of all minterms of a function

¢ Implicant table or cover

A List of implicants sufficient to define a function

¢ Note:

Almplicant tables are smaller in size as compared to truth tables

(c) Giovanni De Micheli

11

Example of truth table

e X =ab+a’ c¢; y=ab+bc+ac

ahc Xy
000 00
001 10
010 00
011 11
100 00
101 01
110 11
11 11

(c) Giovanni De Micheli

Example of an encoded truth table

ahc Xy
000 00
001 10
010 00
011 11
100 00
101 01
110 11
111 11

(c) Giovanni De Micheli

¢ Using the reverse order:

Ax = 11001010
Ay = 11101000

¢ Encoded in hexadecimal:

AX=Ca

Ay=e8

13

Example of implicant table

e X =ab+a’ c¢; y=ab+bc+ac

abc Xy
001 10
*11 1
101 01
11* 1

(c) Giovanni De Micheli

Cubical representation of minterms and implicants

ofi=a’b’'c’ +a b c+ab’ c+abc +abc’

ef,=a’b'c+ab’c

1M1

B 101
001 5 001 B 101

10

.

000
f1 f2

(c) Giovanni De Micheli 15

Representations

¢ Visual representations

A Cubical notation

A Karnaugh maps

¢ Computer-oriented representations

A Matrices

v Sparse
v Various encoding

ABinary-decision diagrams
v Address sparsity and efficiency

(c) Giovanni De Micheli

16

Module 2

¢ Objectives

A Two-level logic optimization
A Motivation
AModels

A Exact algorithms for logic optimization

(c) Giovanni De Micheli

17

Two-level logic optimization
motivation

¢ Reduce size of the representation

¢ Direct implementation

APLAs reduce size and delay

¢ Other implementation styles

A Reduce amount of information

A Simplify local functions and connections

(c) Giovanni De Micheli

18

Programmable logic arrays

¢

& Macro-cells with rectangular structure i}ﬁi’l—,

A Implement any multi-output function

_X

*

¢ Programmable

A Old technology using fuses &

A Grandfather of FPGAs Lk

¢ Programmed T

A Layout generated by module generators

A Fairly popular in the seventies/eighties

¢ Advantages Sl 1|

A Simple, predictable timing

,
T
¥

+ Disadvantages FaERmE D

A Less flexible than cell-based realization

y JUUUUUC‘UULJUULQ

A Dynamic operation in CMOS

=
A
=T
T

¢ Openissue

A Will PLA structures be useful with new nanotechnologies?
(c) Giovanni De Micheli

-
-
M
N

T
245
7§
S
=L
—
g o |
o ¥ A

-n
w
-
4
m
(5}
-n
[+2}

Pseudo NMOS PLA

GND

-4 -

GND

X, XX X

AND-plan

Le

e

[

GND

GND

GND

Programmable logic array

of,=a’b +b’'c+ab; f,=b ¢

00 10 ® ‘
X001 11 o—1

11X 10 i |
(a)

(b)

T (c)

EF? i
!

a a b b’ c ¢’ f f

Two-level minimization

¢ Assumptions

A Function represented as a Boolean cover
v Set of implicants (covering all minterms)

APrimary goal is to reduce the number of implicants

AAll implicants have the same cost

A Secondary goal is to reduce the number of literals
¢ Rationale

Almplicants correspond to PLA rows

A Literals correspond to transistors

(c) Giovanni De Micheli

22

Definitions

¢ Minimum cover

A Cover of a function with minimum number of implicants

A Global optimum

¢ Minimal cover or irredundant cover
A Cover of the function that is not a proper superset of another cover
A No implicant can be dropped
A Local optimum

¢ Minimal w.r.to 1-implicant containment

A No implicant contained by another one
A Weak local optimum

(c) Giovanni De Micheli

23

Example

&f=a b c +ab c+tab c+abc+abc ;f,=a’b’'c+ab’c

B B
o
Minimum cover o
Y, B
o
Irredundant cover o
B X B
o
Minimal cover w.r. to single
implicant containment
f1 f2

(c) Giovanni De Micheli 24

Definitions

¢ Prime implicant

Almplicant not contained by any other implicant

¢ Prime cover

A Cover of prime implicants

¢ Essential prime implicant

A There exist some minterm covered only by that prime implicant

ANeeds to be included in the cover

(c) Giovanni De Micheli 25

Two-level logic minimization

¢ Exact methods

A Compute minimum cover
A Often difficult/impossible for large functions

ABased on Quine-McCluskey method

¢ Heuristic methods

A Compute minimal covers (possibly minimum)

AlLarge variety of methods and programs
v MINI, PRESTO, ESPRESSO

(c) Giovanni De Micheli

26

Exact logic minimization

¢ Quine’ s theorem:

A There is a minimum cover that is prime

¢ Consequence

A Search for minimum cover can be restricted to prime implicants

¢ Quine-McCluskey method

A Compute prime implicants

A Determine minimum cover

(c) Giovanni De Micheli 27

Prime implicant table

¢ Rows: minterms
¢ Columns: prime implicants

¢ Exponential size

A 2" minterms

AUp to 3"/ n prime implicants
¢ Remarks

A Some functions have much fewer primes
A Minterms can be grouped together

Almplicit methods for implicant enumeration

(c) Giovanni De Micheli

28

e f=a’b’'c’ +a’ b’ c+ab’ ¢+abc +abc’

¢ Primes:

o Table:

(c) Giovanni De Micheli

$ 2w R

Example

00*
*01
1*1
11%

=

000
001
101
111
110

OO0k KHQ
OO0OrRrFkF O

O = OO

= = O 00 S

Prime implicants of f

Minimum cover of f

29

Minimum cover
early methods

¢ Reduce table

Alteratively identify essentials,
save them in the cover.
Remove covered minterms

¢ Petrick’ s method

A Write covering clauses in pos form
A Multiply out pos form into sop form
A Select cube of minimum size

¢ Remark

A Multiplying out clauses has exponential cost

(c) Giovanni De Micheli 30

Example

¢ pos clauses
A(x) (x+B) (B+Y)(y+d)(d)=1
¢ sop form; 5

A XBO+ xyd =1

¢ Solutions:
{xBd}
{xyo}

(c) Giovanni De Micheli 31

Matrix representation

¢ View table as Boolean matrix: A
¢ Selection Boolean vector for primes: x

¢ Determine x such that

AAXx21

A Select enough columns to cover all rows

¢ Minimize norm (1 count) of x

(c) Giovanni De Micheli

32

Example

12111

1101

100 0
1100

0110

0011
0001

33

(c) Giovanni De Micheli

Covering problem

¢ Set covering problem:

AA setS -- minterm set
AA collection C of subsets (implicant set)

A Select fewest elements of C to cover S

¢ Computationally intractable problem

¢ Exact solution method

A Branch and bound algorithm

¢ Several heuristic approximation methods

(c) Giovanni De Micheli

34

Example
Edge-cover of a hypergraph

44

—

(c) Giovanni De Micheli

Il

35

Branch and bound algorithm

¢ Tree search in the solution space

A Potentially exponential

¢ Use bounding function:

Alf the lower bound on the solution cost
that can be derived from a set of future choices
exceeds the cost of the best solution seen so far,
then kill the search

A Bounding function should be fast to evaluate and accurate

¢ Good pruning may expedite the search

(c) Giovanni De Micheli

36

(c) Giovanni De Micheli

Example

Bound =6
Kill sub-tree

37

Branch and bound for logic minimization
Reduction strategies

¢ Use matrix formulation of the problem

¢ Partitioning:
Alf Ais block diagonal:

v Solve covering problems for the corresponding blocks

¢ Essentials

A Column incident to one (or more) rows with single 1

v Select column
v Remove covered row(s) from table

(c) Giovanni De Micheli 38

Branch and bound for logic minimization
Reduction strategies

¢ Column (implicant) dominance:

Alfag2ay forall k
v Remove column j (dominated)

ADominated implicant (j) has its minterms already covered by
dominant implicant (i)

¢ Row (minterm) dominance:

Alfay 2 ay forall k
v Remove row i (dominant)

AWhen an implicant covers the dominated minterm, it also covers
the dominant one

(c) Giovanni De Micheli 39

40

"
i
s senes
H—
= @ -— I 1
He==)
—

O- 0O

OO0

S O~ 0O
O™~ m™=~0O ™

-~ O 0O

Example

|

T
HH

HH
T

A

(c) Giovanni De Micheli

Example

¢Fifth row is dominant

¢Fourth column is essential A —

|
OO0 K=K

¢Fifth column is dominated

& Matrix after reductions:

>
|
O =

(c) Giovanni De Micheli

= O KR KO

= = O

R OROR

= O

R P, O QOO

OO +~=O

41

Branch and bound covering algorithm

EXACT_COVER(A,x,b) {
Reduce matrix A and update corresponding x;
if (current_estimate = |b|) return (b);
if (A has no rows) return(x);
select a branching column c;
X.=1;
A = A after deleting ¢ and rows incident to it;
X~ = EXACT_COVER(A,x,b);
if (| x7[<[b])
b=x";
X =0;
A = A after deleting c;
X~ = EXACT_COVER(A,x,b);
if (| x7[<[bl)
b=Xx";
return(b);

(c) Giovanni De Micheli

42

Bounding function

¢ Estimate lower bound on covers that can be derived from
current solution vector x

¢ The sum of the 1s in x, plus bound of cover for local A

Alndependent set of rows

v No 1 in the same column
v Require independent implicants to cover

A Construct graph to show pairwise independence

AFind clique number
v Size of the largest clique

A Approximation (lower) is acceptable

(c) Giovanni De Micheli 43

Example

¢Row 4 independent from 1,2,3

¢Clique number and bound is 2

(c) Giovanni De Micheli

OO K=Kk

= O KK O

R OKROR

R L, OO0

OO +~=O

44

Example

¢ There are no independent rows

A Clique number is 1 (one vertex)

A Bound is 1#1=2 A

v Because of the essential already
selected

(c) Giovanni De Micheli

O = -

_— = O

- —

45

Example
Branching on the cyclic core

¢ Select first column

A Recur with A = [11]

v Delete one dominated column
v Take other column (essential) A

O = -
_— = O
_ =

A New costis 3

¢ Exclude first column

A Find another solution with cost
equal to 3.

A Discard

(c) Giovanni De Micheli 46

Espresso-exact

¢ Exact 2-level logic minimizer

¢ Exploits iterative reduction and branch and bound
algorithm on cyclic core

¢ Compact implicant table

ARows represent groups of minterms covered by the same
implicants

¢ Very efficient

A Solves most benchmarks

(c) Giovanni De Micheli

47

After removing the essentials

X
0000,0010 11
1101 00

(c) Giovanni De Micheli

Example

0111

31101

o« 0**0
O 10**
e 101
C *101

48

Exact two-level minimization

¢ There are two main difficulties:

A Storage of the implicant table

A Solving the cyclic core

¢ Implicit representation of prime implicants

A Methods based on binary decision diagrams

A Avoid explicit tabulation

¢ Recent methods make 2-level optimization solve exactly
almost all henchmarks

AHeuristic optimization is just used to achieve solutions faster

(c) Giovanni De Micheli

49

Module 3

¢ Boolean Relations

A Motivation of using relations
A Optimization of realization of Boolean relation

A Comparisons to two-level optimization

(c) Giovanni De Micheli

50

Boolean relations

¢ Generalization of Boolean functions

¢ More than one output pattern corresponds to an input
pattern

A Multiple-choice specifications
AModel inner blocks of multi-level circuits

¢ Degrees of freedom in finding an implementation

A More general than don 't care conditions

¢ Problem:

A Given a Boolean relation, find a minimum cover of a compatible
Boolean function that can implement the relation

(c) Giovanni De Micheli 51

Example

+Compare: 2,
Aatbh>47? T T
Aa+b<3? COMPARATOR

N2
R

ADDER

N‘I
BE
%0 % 0o 1

(c) Giovanni De Micheli

Q
[

Q
o

S
[

Example

X

= = =R R, O PR OO0 O0O0OO0

HFRPOFRRFRFROOHFORFRLOFOODO

R PO OFOFRFRFOOOR OO

HOHI—‘I—‘OOI—‘O!—‘I—‘OOOI—‘OOO“

{7000, 001, 010 }
{ 000, 001, 010 }
{ 000, 001, 010 }
{ 000, 001, 010 }
{ 000, 001, 010 }
{ 000, 001, 010 }

{ 011, 100 }

{ 011, 100 }

{ 011, 100 }

{ 011, 100 }

{ 011, 100 }

{ 011, 100 }

{ 011, 100 }

{ 101, 110, 111 }Notethatoutput111
{101, 110, 111 }cannotbe a+b but can be

{ 101, 110, 111 }considered as a dont care
53

Example

¢Circuit is no longer an adder

a1 ap bl bo X

o * 1 * 1010
1 * 0 * |010
1 * 1 * 1100
x * * 1 1001
* 1 * * | 001

(c) Giovanni De Micheli

Minimization of Boolean relations

¢ Since there are many possible output values (for any input),
there are many logic functions implementing the relation

A Compatible functions

¢ Problem

AFind a minimum compatible function

¢ Do not enumerate all compatible functions

A Compute the primes of the compatible functions
v C-primes

ADerive a logic cover from the c-primes

(c) Giovanni De Micheli 95

Example
¢ Boolean relation:
¢ 4 compatible functions

¢ Assume c-primes include:

e *11 01
C 1*1 10

¢ To cover minterm 111:

A Take both primes or none

AEC+ €T

APetrick’s function is binate

(c) Giovanni De Micheli

ahc Xy
000 00
001 00
010 00
011 10
100 00
101 01
110 {00,11}
111 {00,11}

Minimizing Boolean relations

¢ Minimizing Boolean relations is more complex

A As compared to minimizing Boolean functions

¢ In classic Boolean minimization we just need to select enough
implicants to cover the minterms

A Covering clause is unate in all variables

A Any additional implicant does not hurt

¢ In Boolean relation optimization, we need to pick implicants to
realize a compatible function

A Some implicants cannot be taken together
A Choosing an implicant may imply rejecting an other
A Covering clause is binate (implicant mutual exclusion)

(c) Giovanni De Micheli

57

Solving binate covering

¢ Binate cover can be solved with branch and bound

Aln practice much more difficult to solve, because it is harder to
bound effectively

¢ Binate cover can be reduced to min-cost SAT

A SAT solvers can be used

¢ Binate cover can he also modeled by BDDs

¢ Several approximation algorithms for binate cover

(c) Giovanni De Micheli 58

Summary: Boolean Relations

¢ Generalization of Boolean functions

A More degrees of freedom than don ’t care sets

¢ Useful to represent multiple choices
¢ Useful to model internals of logic networks

¢ More general formalism

A But computationally-intensive solution method

(c) Giovanni De Micheli

59

